
 Page 1 of 12

C# Basics Cheat Sheet (1 of 4)
begincodingnow.com (C# Cheat Sheet is 12 pages)
Three Sections: Basics (4 pages) OOP (4 pages) Advanced (4 pages)

Introduction to C#
The C# language was developed by Microsoft for the .NET framework.
C# is a completely-rewritten language based on C Language and C++
Language. It is a general-purpose, object-oriented, type-safe platform-
neutral language that works with the .NET Framework.

Visual Studio (VS)

Visual Studio Community 2017 is a free download from Microsoft. To
create a new project, go to File ➤ New ➤ Project in Visual Studio. From
there select the Visual C# template type in the left frame. Then select
the Console App template in the right frame. At the bottom of the
window configure the name and location of the project. Click OK and
the project wizard will create your project.

C# Hello World (at the Console)
using System;
namespace ConsoleApp1
{
 class Program
 {
 static void Main(string[] args)
 {
 Console.WriteLine("Hello World");
 /* this comment in C# is ignored by compiler */
 /* a multi-line comment
 that is ignored by the compiler*/
 }
 }
}

Ctrl+F5 will run the program without the debug mode. The reason why
you do not want to choose the Start Debugging command (F5) here is
because the console window will then close as soon as the program has
finished executing, unless you use Console.ReadKey(); at the end.
There are several methods and properties of console. You can change
colors and put a Title on the console. Add this to the Main() to use your
namespace, which may be your solution and project name also.
Type myType = typeof(Program);
Console.Title = myType.Namespace;
Console.ForegroundColor = ConsoleColor.Red;
Console.WindowWidth = 180; // max might be 213 (180 is very wide)

A Few Code Snippets in VS
Code Snippet Description

cw Console.WriteLine()

prop public int MyProperty { get; set; }

ctor Constructor
Ctrl+K+C/Ctrl+K+U Comment & un-comment a selected code block
F12 Go to Definition

ReSharper is a plug-in for Visual Studio that adds many code navigation
and editing features. It finds compiler errors, runtime errors,
redundancies, and code smells right as you type, suggesting intelligent
corrections for them.

Common Language Runtime (CLR)
A core component of the .NET Framework is the CLR, which sits on top
of the operating system and manages program execution. You use the

.NET tools (VS, compiler, debugger, ASP and WCF) to produce compiled
code that uses the Base Class Library (BCL) that are all used by the CLR.
The compiler for a .NET language takes a source code (C# code and
others) file and produces an output file called an assembly (EXE or DLL),
which isn’t native machine code but contains an intermediate language
called the Common Intermediate Language (CIL), and metadata. The
program’s CIL isn’t compiled to native machine code until it’s called to
run. At run time, the CLR checks security, allocates space in memory
and sends the assembly’s executable code to its just-in-time (JIT)
compiler, which compiles portions of it to native (machine) code. Once
the CIL is compiled to native code, the CLR manages it as it runs,
performing such tasks as releasing orphaned memory, checking array
bounds, checking parameter types, and managing exceptions.
Compilation to native code occurs at run time. In summary, the steps
are: C# code ➤assembly (exe or dll) & BCL ➤ CLR & JIT compiler
➤machine code ➤ operating system ➤ machine.

Variable Declaration and Assignment
In C#, a variable must be declared (created) before it can be used. To
declare a variable, you start with the data type you want it to hold
followed by a variable name. A value is assigned to the variable by using
the equals sign, which is the assignment operator (=). The variable then
becomes defined or initialized. Although seemingly simple, this concept
becomes important to understand when we later talk about
instantiating a class to create a concrete object with the new keyword.

Data Types
A primitive is a C# built-in type. A string is not a primitive type but it is a
built-in type.

Primitive Bytes Suffix Range Sys Type

bool 1 True or False Boolean

char 2 Unicode Char

byte 1 0 to 255 Byte

sbyte 1 -128 to 127 SByte

short 2 -32,768 to
32,767

Int16

int 4 -231 to 231-1 Int32

long 8 L –263 to 263–1 Int64

ushort 2 0 to 216-1 UInt16

uint 4 U 0 to 232-1 UInt32

ulong 8 UL 0 to 264-1 UInt64

float 4 F +-1.5 x 10-45 to
+-3.4 x 1038

Single

double 8 D +-5.0 x 10-324 to
+-1.7 x 10308

Double

decimal 16 M +-1.0 x 10-28 to
+-7.9 x 1028

Decimal

The numeric suffixes listed in the preceding table explicitly define the
type of a literal. By default, the compiler infers a numeric literal to be
either of type double or an integral type:
• If the literal contains a decimal point or the exponential symbol (E), it
is a double.
• Otherwise, the literal’s type is the first type in this list that can fit the
literal’s value: int, uint, long, and ulong.

• Integral Signed (sbyte, short, int, long)

• Integral Unsigned (byte, ushort, uint, ulong)

• Real (float, double, decimal)
Console.WriteLine(2.6.GetType()); // System.Double
Console.WriteLine(3.GetType()); // System.Int32

Type Default Value Reference/Value

All numbers 0 Value Type
Boolean False Value Type
String null Reference Type
Char ‘\0’ Value Type
Struct Value Type
Enum E(0) Value Type
Nullable null Value Type
Class null Reference Type
Interface Reference Type
Array Reference Type
Delegate Reference Type

Reference Types & Value Types
C# types can be divided into value types and reference types. Value
types comprise most built-in types (specifically, all numeric types, the
char type, and the bool type) as well as custom struct and enum types.
There are two types of value types: structs and enumerations.
Reference types comprise all class, array, delegate, and interface types.
Value types and reference types are handled differently in memory.
Value types are stored on the stack. Reference types have a reference
(memory pointer) stored on the stack and the object itself is stored on
the heap. With reference types, multiple variables can reference the
same object, and object changes made through one variable will affect
other variables that reference the same object. With value types, each
variable will store its own value and operations on one will not affect
another. Integers can be used with enum.

Strings
A string is a built-in non-primitive reference type that is an immutable
sequence of Unicode characters. A string literal is specified between
double quotes. The + operator concatenates two strings. A string
preceded with the $ character is called an interpolated string which can
include expressions inside braces { } that can be formatted by
appending a colon and a format string.
string s = $"255 in hex is {byte.MaxValue:X2}";

Interpolated strings must complete on a single line, unless you also
specify the verbatim string operator. Note that the $ operator must
come before @ as shown here:
int x = 2;
string s = $@"this spans {
x} lines in code but 1 on the console.";

Another example:
 string s = $@"this spans {x}
lines in code and 2 lines on the console."; // at left side of editor

string does not support < and > operators for comparisons. You must
instead use string’s CompareTo method, which returns a positive
number, a negative number, or zero.

Char
C#’s char type (aliasing the System.Char type) represents a Unicode
character and occupies two bytes. A char literal is specified inside single
quotes.
char MyChar = 'A';
char[] MyChars = { 'A', 'B', 'C' };
Console.WriteLine(MyChar);
foreach (char ch in MyChars) { Console.Write(ch); }

 Page 2 of 12

C# Basics Cheat Sheet (2 of 4)
begincodingnow.com

Escape Sequences
Escape sequences work with chars and strings, except for verbatim
strings, which are proceeded by the @ symbol.
Console.WriteLine("Hello\nWorld"); // on two lines
Console.WriteLine("Hello\u000AWorld"); // on two lines
char newLine = '\n';
Console.WriteLine("Hi" + newLine + "World"); // on two lines

The \u (or \x) escape sequence lets you specify any Unicode character
via its four-digit hexadecimal code.

Char Meaning Value

\’ Single quote 0x0027
\” Double quote 0x0022
\\ Backslash 0x005C
\0 Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return 0x000D
\t Horizontal tab 0x0009
\v Vertical tab 0x000B

Verbatim string literals. A verbatim string literal is prefixed with @ and
does not support escape sequences.
string myPath = @"C:\temp\";
string myPath = "C:\\temp\\";

Constants
A local constant is much like a local variable, except that once it is
initialized, its value can’t be changed. The keyword const is not a
modifier but part of the core declaration and it must be placed
immediately before the type. A constant is a static field whose value
can never change. A constant is evaluated statically at compile time and
the compiler literally substitutes its value whenever used (rather like a
macro in C++). A constant can be any of the built-in numeric types,
bool, char, string, or an enum type.
const int myNumber = 3;

Expressions
An expression essentially denotes a value. The simplest kinds of
expressions are constants (such as 45) and variables (such as myInt).
Expressions can be transformed and combined with operators. An
operator takes one or more input operands to output a new
expression.

Operators
Operators are used to operate on values and can be classed as unary,
binary, or ternary, depending on the number of operands they work on
(one, two, or three). They can be grouped into five types: arithmetic,
assignment, comparison, logical and bitwise operators. The arithmetic
operators include the four basic arithmetic operations, as well as the
modulus operator (%) which is used to obtain the division remainder.
The second group is the assignment operators. Most importantly, the
assignment operator (=) itself, which assigns a value to a variable. The
comparison operators compare two values and return either true or
false. The logical operators are often used together with the
comparison operators. Logical and (&&) evaluates to true if both the

left and right side are true, and logical or (||) evaluates to true if either
the left or right side is true. The logical not (!) operator is used for
inverting a Boolean result. The bitwise operators can manipulate
individual bits inside an integer. A few examples of Operators.

Symbol Name Example Overloadable?

. Member access x.y No
() Function call x() No
[] Array/index a[x] Via indexer
++ Post-increment x++ Yes
-- Post-decrement x-- Yes
new Create instance new Foo() No
?. Null-conditional x?.y No
! Not !x Yes
++ Pre-increment ++x Yes
-- Pre-decrement --x Yes
() Cast (int)x No
== Equals x == y Yes
!= Not equals x != y Yes
& Logical And x & y Yes
| Logical Or x | y Yes
&& Conditional And x && y Via &
|| Conditional Or x || y Via|
? : Ternary isTrue ? then

this : elseThis
No

= Assign x = 23 No
*= Multiply by self

(and / + -)
x *= 3 Via *

=> Lambda x => x + 3 No

Note: The && and || operators are conditional versions of the & and |
operators. The operation x && y corresponds to the operation x & y,
except that y is evaluated only if x is not false. The right-hand operand
is evaluated conditionally depending on the value of the left-hand
operand. x && y is equivalent to x ? y : false
The ?? operator is the null coalescing operator. If the operand is non-
null, give it to me; otherwise, give me a default value.

The using Directive
To access a class from another namespace, you need to specify its fully
qualified name, however the fully qualified name can be shortened by
including the namespace with a using directive. It is mandatory to
place using directives before all other members in the code file. In
Visual Studio, the editor will grey out any using statements that are not
required.

StringBuilder
System.Text.StringBuilder
There are three Constructors
StringBuilder sb = new StringBuilder();
StringBuilder sb = new StringBuilder(myString);
StringBuilder sb = new StringBuilder(myString,capacity);
Capacity is initial size (in characters) of buffer.
The string class is immutable, meaning once you create a string object
you cannot change its content. If you have a lot of string manipulations
to do, and you need to modify it, use StringBuilder. Note that you
cannot search your string. You do not have the following: IndexOf(),
StartsWith(), LastIndexOf(), Contains() and so on. Instead you have
methods for manipulating strings such as Append(), Insert(), Remove(),
Clear() and Replace(). StringBuilder needs using System.Text. You

can chain these methods together because each of these methods
return a StringBuilder object.
static void Main(string[] args)
{
 var sbuild = new System.Text.StringBuilder("");
 sbuild.AppendLine("Title")
 .Append('=', 5)
 .Replace('=', '-')
 .Insert(0, new string('-', 5))
 .Remove(0, 4);
 Console.WriteLine(sbuild);
}

Arrays
An array is a fixed number of elements of the same type. An array uses
square brackets after the element type. Square brackets also index the
array, starting at zero, not 1.
static void Main(string[] args)
{
 int[] numArray = { 7, 2, 3 };
 int[] numArray2 = new int[3]; // default value is 0
 // below is 3 rows and 2 columns
 int[,] numArray3 = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
 char[] vowels = new char[] { 'a', 'e', 'i', 'o', 'u' };
 char[] vowels2 = { 'a', 'e', 'i', 'o', 'u' }; // simplified
 Array.Sort(numArray);
 foreach (int n in numArray) { Console.Write(n); } // 237
 Console.WriteLine("First element is: " + numArray[0]); // 2
}

An array itself is always a reference type object, regardless of element
type. For integer types the default is zero and for reference types the
default is null. For Boolean the default is False.
int[] a = null; // this is legal since arrays themselves are ref tyes

Rectangular & Jagged Arrays
With rectangular arrays we use one set of square brackets with the
number of elements separated by a comma. Jagged arrays are arrays of
arrays, and they can have irregular dimensions. We use 2 sets of square
brackets for jagged arrays.

static void Main(string[] args)
{
 // a jagged array with 3 rows
 string[][] a = new string[3][];
 a[0] = new string[1]; a[0][0] = "00";
 a[1] = new string[3]; a[1][0] = "10"; a[1][1] = "11";
 a[1][2] = "12";
 a[2] = new string[2]; a[2][0] = "20"; a[2][1] = "21";
 foreach (string[] b in a)
 {
 foreach (string c in b)
 {
 Console.Write(c + " ");
 }
 }
 Console.WriteLine("initialize them");
 string[][] e = { new string[] { "00" },
 new string[] { "10", "11", "12" },
 new string[] { "20", "21" } };

 foreach (string[] f in e)
 {
 foreach (string g in f)
 {
 Console.Write(g + " ");
 }
 }
}

 Page 3 of 12

C# Basics Cheat Sheet (3 of 4)
begincodingnow.com

DateTime
DateTime is a struct and is therefore a value type.
var dateTime = new DateTime(2000, 1, 1);
var now = DateTime.Now; // gets the current date & time
var today = DateTime.Today; // gets the current date (no time)
var utcnow = DateTime.UtcNow;
Console.WriteLine($"The current hour is: {now.Hour}");
Console.WriteLine($"The current minute is: {now.Minute}");
Console.WriteLine($"The current second is: {now.Second}");
var tomorrow = now.AddDays(1);
var yesterday = now.AddDays(-1);
// AddDays, AddHours, AddMinutes, AddMonths, AddYears etc.
Console.WriteLine($"Tomorrow (yyyy-mm-dd): {tomorrow}");
Console.WriteLine(now.ToLongDateString());
Console.WriteLine(now.ToShortDateString());
Console.WriteLine(now.ToLongTimeString());
Console.WriteLine(now.ToShortTimeString());
Console.WriteLine(now.ToString()); // shows date and time
Console.WriteLine(now.ToString("yyyy-MM-dd")); // format specifier
Console.WriteLine(now.ToString("yyyy-MMMM-dd")); // format specifier
Console.WriteLine(now.ToString("dddd yyyy-MMMM- dd"));
Console.WriteLine(now.ToString("yyyy-MM-dd HH:mm:ss"));
Console.WriteLine(String.Format("today: {0:D}", now));
Console.WriteLine(String.Format("today: {0:F}", now));
// D F d f g G M m Y y t T s u U

TimeSpan
// Creating TimeSpan object - there are 3 ways.
var timeSpan = new TimeSpan(2, 1, 45); // hours minutes second
// Creating TimeSpan object - there are 3 ways.
var timeSpan = new TimeSpan(2, 1, 45); // hours minutes seconds
var timeSpan1 = new TimeSpan(3, 0, 0); // 3 hours
// second way:
// easier to know it is one hour with FromHours()
var timeSpan2 = TimeSpan.FromHours(1);
// third way:
var now = DateTime.Now;
var end = DateTime.Now.AddMinutes(2);
var duration = end - now;
Console.WriteLine("Duration: " + duration);
// above result is: Duration: 00:02:00.00199797
var negativeduration = now - end;
Console.WriteLine("\"Negative Duration\": " + duration); // positive
number

TimeSpan trueEnd = now.AddMinutes(2) - now; // subtract to get TimeSpa
n object
Console.WriteLine("True Duration: " + trueEnd);
// above output: True Duration: 00:02:00

// Properties
// timeSpan is two hours, one minutes and 45 seconds
Console.WriteLine("Minutes: " + timeSpan.Minutes);
Console.WriteLine("Total Minutes: " + timeSpan.TotalMinutes);
Console.WriteLine("Total Days: " + timeSpan.TotalDays);

// Add Method of TimeSpan
// Add 3 min to our original TimeSpan 2 hours 1 minutes 45 seconds
Console.WriteLine("Add 3 min: " + timeSpan.Add(TimeSpan.FromMinutes(3)
));
Console.WriteLine("Add 4 min: " + timeSpan.Add(new TimeSpan(0,4,0)));
// ToString method
Console.WriteLine("ToString: " + timeSpan.ToString());
// don't need ToString here:
Console.WriteLine("ToString not needed: " + timeSpan);
// Parse method
Console.WriteLine("Parse: " + TimeSpan.Parse("01:02:03"));

Formatting Numerics
Numbers fall into two categories: integral and floating point.

Format
Specifier

Pattern Value Description

C or c {0:C2}, 2781.29 $2781.29 Currency
D or d {0:D5}, 78 00078 Must be integer
E or e {0:E2}, 2781.29 2.78+E003 Must be floating

point
F or f {0:F2}, 2781.29 2781.29 Fixed point
G or g {0:G5}, 2781.29 2781.2 General
N or n {0:N1}, 2781.29 2,781.29 Inserts commas
P or p {0:P3}, 4516.9 45.16% Converts to percent
R or r {0:R}, 2.89351 2.89315 Retains all decimal

places (round-trip)
X or x {0,9:X4}, 17 0011 Converts to Hex

Console.WriteLine("Value: {0:C}.", 447); // $447.00
int myInt = 447;
Console.WriteLine($"Value: {myInt:C}"); // $ is interpolation $447.00

The optional alignment specifier represents the minimum width of the
field in terms of characters. It is separated from the index with a
comma. It consists of a positive or negative integer. The sign represents
either right (positive) or left (negative) alignment.
Console.WriteLine("Value: {0, 10:C}", myInt); // + right align
Console.WriteLine("Value: {0, -10:C}", myInt); // - left align

Value: $447.00
Value: $447.00
Console.WriteLine($"Value: {myInt, 10:C}"); // interpolation

Value: $447.00
Console.WriteLine("Percent: {0:P2}",0.126293); // 12.63 rounds
Console.WriteLine("{0:E2}", 12.6375);//2 decimal places 1.26E+001

Enumerated Type
It can be defined using the enum keyword directly inside a namespace,
class, or structure.
public enum Score
{
 Touchdown = 6, FieldGoal = 3, Conversion = 1, Safety = 2,
}
class Program
{
 static void Main(string[] args)
 {
 Console.WriteLine(Score.Touchdown);// output: Touchdown
 int myInt = (int)Score.FieldGoal;
 Console.WriteLine(myInt); // output: 3
 Score myScore = (Score)6;
 Console.WriteLine(myScore); // output: Touchdown
 string teamscore = "Conversion";
 Enum.TryParse(teamscore, out Score myVar);
 Console.WriteLine(myVar); // output: Conversion
 Console.WriteLine((int)myVar); // output: 1
 }
}

Enumerations could just be a list of words. For example you could have
a list of the days of the week: Monday, Tuesday and so on, without any
values. You can use IsDefined() and typeof().

if(Enum.IsDefined(typeof(Score), “Safety”)…

The Object Class
In .NET, everything is an object and the base of everything is the
Object class. The available methods of an object are: Equals,
GetHashCode, GetType and ToString.

Struct
You can define a custom value type with the struct keyword. A struct
is a value type. Fields cannot have an initializer and cannot inherit from
a class or be inherited. The explicit constructor must have a parameter.
struct Customer
{
 public string firstName;
 public string lastName;
 public string middleName;
 public int birthYear;
 //public string Name() => firstName + " " + middleName + " " + las
tName;
 public string Name() => firstName + " " +
 (String.IsNullOrWhiteSpace(middleName) ? "" :
 middleName + " ") + lastName;
 // Name() accesses firstName & lastName; uses lambda and ternary
 public string NameFunct()
 {
 string midN = String.IsNullOrWhiteSpace(middleName) ?
 "" : middleName + " ";
 return firstName + " " + midN + lastName;
 }
}
class Program
{
 static void Main(string[] args)
 {
 Customer myCustomer;
 myCustomer.firstName = "Sam";
 myCustomer.lastName = "Smith";
 myCustomer.middleName = " "; // note the spaces
 myCustomer.birthYear = 1960;
 Console.WriteLine($"{myCustomer.Name()} was born in {myCustome
r.birthYear}.");
 Console.WriteLine($"{myCustomer.NameFunct()} was born in {myCu
stomer.birthYear}.");
 // Output: Sam Smith was born in 1960.
 // Output: Sam Smith was born in 1960.
 }
}

Conversions
C# can convert between instances of compatible types. A conversion
always creates a new value from an existing one. Conversions can be
either implicit or explicit: implicit conversions happen automatically,
whereas explicit conversions require a cast. One useful use of a
conversion is when you are getting input from the user in a Console
program, using Convert().
Console.WriteLine("Enter your number: ");
double number = Convert.ToDouble(Console.ReadLine());

Here are some examples below using implicit and explicit conversions.
int x = 12345; // int is a 32-bit integer
long y = x; // implicit conversion to 64-bit long
short z = (short)x; // cast - explicit conversion to 16-bit int
Console.WriteLine(z);
byte b = (byte)x; // data loss !!
Console.WriteLine(b); // 57
// 12345 = 1001 0011 0000 0011
// 57 = 1001 1100
int myInt = 1_000_000; // C# 7 allows underscores
Console.WriteLine(2.6.GetType()); // System.Double
Console.WriteLine(3.GetType()); // System.Int32

Conversions from integral types to real types are implicit, whereas the
reverse must be explicit. Converting from a floating-point to an integral
type truncates any fractional portion; to perform rounding conversions,
use the static System.Convert class.
float f = 128.67F;
int d = Convert.ToInt32(f); // rounds
// System.Int32 d is 129
Console.WriteLine(d.GetType() + " d is " + d);

 Page 4 of 12

C# Basics Cheat Sheet (4 of 4)
begincodingnow.com

The Regex Class
The class is System.Text.RegularExpressions.Regex

Pattern Desscription Example

+ Matches one or more ab+c matches abc, abbc
* Matches zero or more ab*c matches ac, abbc
? Matches zero or one ab?c matches ac, abc
\d Any digit from 0 to 9 \d\d matches 14, 98, 03
[0-9] Any digit from 0 to 9 [0-9] matches 3, 8, 1, 0, 2
\d{3} Any 3 digits from 0-9 \d{3} matches 123, 420
[0-9]{3} Any 3 digits from 0-9 [0-9]{3} matches 123, 420

Comparison Operators
The comparison operators compare two values and return true or false.
They specify conditions that evaluate to true or false (like a predicate):
== != > < >= <=

Conditional Statements
Syntax Example

if (condition) {

 // statements

} else {

 // statements

}

if (product == "H1")
 price = 134.00M;// M decimal
else if (product == "H2")
 price = 516.00M;
else price = 100.00M;

q ? a : b,

if condition q is true, a is

evaluated, else b is evaluated.

price = (product == "A1") ?
 34 : 42;

// ternary operator ? :

switch (expression)

 { case expression:

 // statements

 break / goto / return() case ...

 default:

 // statements

 break / goto / return()

 }

// expression may be integer,

string, or enum

switch (product)
{
 case "P1": price = 15; break;
 case "P2": price = 16; break;
 default: price = 10M; break;
}

Loops
Syntax Example

 while (condition)

{ body }

var i = 1;
var total = 0;
while (i <= 4)
{ // 1 + 2 + 3 + 4 = 10
 total = total + i;
 i++;
}

do { body }

while (condition);

do
{ // 1 + 2 + 3 + 4 + 5 = 15
 total = total + i;
 i++;
}
while (i <= 4);

for (initializer;
termination condition;
iteration;)

{ // statements }

for (var i = 1; i < list.Count; i++)
{
 if (list[i] < min)
 min = list[i];
}

foreach (type identifier in
collection)

{ // statements }

int[] nums = new int[]{ 2, 5, 4};
foreach (int num in nums)
{
 Console.WriteLine(num);
}

Lists
Lists are covered in more detail in the Lists of Objects part in the
Advanced section, but are here now due to their importance and
popularity.
var numbers = new List<int>() {1,2,3,4};
numbers.Add(1);
numbers.AddRange(new int [3] {5,6,7});
foreach (var num in numbers) Console.Write(num + " ");

File IO

using System;
using System.IO; // add this
namespace FileManipulation
{
 class Program
 {// File (statis) and FileInfo (instance)
 static void Main(string[] args)
 {
 var filenamewithpath = @"D:\myfile.txt"; // verbatim @
 using (File.Create(filenamewithpath))
 // without using you get Unhandled Exception
 // true will over-write existing file
 File.Copy(filenamewithpath, @"D:\myfile_2.txt", true);
 File.Copy(filenamewithpath, @"D:\myfile_3.txt", true);
 File.Delete(@"D:\myfile_3.txt");
 if(File.Exists(@"D:\myfile_2.txt"))
 {
 Console.WriteLine("File " + @"D:\myfile_2.txt" + " exists.");
 }
 string filecontent = File.ReadAllText(filenamewithpath);
 var fileInfo = new FileInfo(filenamewithpath);
 fileInfo.CopyTo(@"D:\myfile_4.txt", true);
 var fileInfo4 = new FileInfo(@"D:\myfile_4.txt");
 if (fileInfo4.Exists) // Exists is a property
 {
 fileInfo4.Delete(); // takes no paramters
 }
 else
 {
 Console.WriteLine("Cannot delete file "
 + @"D:\myfile_4.txt" + " because it does not exist.");
 }
 // FileInfo does not have a ReadAllText method
 // need to call openread which returns a file string but
 // that is a little bit complex.
 Console.WriteLine("Press any key to continue...");
 }
 }
}

Use File for occasional usage and FileInfo for many operations because
each time you use File the OS does security checks and that can slow
down your app; with FileInfo you need to create an instance of it. Both
are easy to use. StreamReader and StreamWriter are available. You can
encode in ASCII, Unicode, BigEndianUnicode, UTF-8, UTF-7, UTF-32 and
Default. Different computers can use different encodings as the default,
but UTF-8 is supported on all the operating systems (Windows, Linux,
and Max OS X) on which .NET Core applications run..
var filenamewithpath = @"D:\temp\A_ascii.txt";
File.WriteAllText(filenamewithpath, "A", Encoding.ASCII);

Directory IO

using System;
using System.IO; // add this
namespace Directories
{
 class Program
 {
 static void Main(string[] args)
 {
 Directory.CreateDirectory(@"D:\temp\folder1");

 File.Create(@"D:\temp\folder1\mytext.txt");
 File.Create(@"D:\temp\folder1\mytext2.txt");
 string[] files = Directory.GetFiles(@"D:\temp\folder1", "*.*",
 SearchOption.AllDirectories); // or TopDirectoryOnly

 foreach (var file in files){Console.WriteLine(file);}
 var directories = Directory.GetDirectories(@"D:\temp","*.*",
 SearchOption.AllDirectories);
 foreach (var dir in directories)
 {
 Console.WriteLine(dir);
 }
 var directoryInfo = new DirectoryInfo(@"D:\temp\folder1");
 var ct = directoryInfo.CreationTime;
 Console.WriteLine("Creation date and time: " + ct);
 }
 }
}

Debugging
To debug your code you first decide where in your code you suspect a
problem and create a breakpoint by putting the cursor on that line and
pressing F9. Press F5 to run the program in debug mode. You can use
multiple breakpoints if you want. We can either use F10 to step over or
perhaps F11 to step into. Place your cursor over a variable and you
should be able to see the data inside. If all looks good, go ahead and
press F10 or perhaps F11. If you have another breakpoint, you can
press F5 to run to the next breakpoint. Also, you can move the current
position of execution backwards by dragging the yellow arrow at the
left. When you are done you can press Shift+F11 to step out. You can
end the debugging with Shift+F5. You can run it without the debugger
with Ctrl+F5. You can manage all your breakpoints with the Breakpoints
window. Debug ➤ Windows ➤ Breakpoints.

It’s a good idea to always check that the methods you write receive
meaningful data. For example, if you expect a list of something, check
that the list is not null. Users may not enter values you expect. It’s
important to think of these Edge Cases, which are uncommon
scenarios, which is the opposite of the Happy Path.

NuGet Package Manager
NuGet is the package manager for .NET. The NuGet client tools provide
the ability to produce and consume packages. The NuGet Gallery is the
central package repository used by all package authors and consumers..
Packages are installed into a Visual Studio project using the Package
Manager UI or the Package Manager Console. One interesting package
is the HtmlAgilityPack that allows you to parse HTML, but there are lots
of them.

Your Own Library (Assembly)

To create a class library using Visual Studio 2017 Community, in the
menu select File ➤ New ➤ Project ➤ Installed ➤ Visual C# ➤ .NET
Standard ➤ Class Library(.NET Standard) and give it a name and
location and press OK. Write your library code. Switch to Release from
Build. Press Ctrl+Shift+B to build the DLL. Note the location of the DLL
(bin\Release\netstandard2.0). Within the project that uses the library,
you need to give the compiler a reference to your assembly by giving its
name and location. Select Solution Explorer ➤ Right-click the
References folder ➤ Add Reference. Select the Browse tab, browse to
the DLL file mentioned above. Click the OK button. For convenience you
can now add a using statement at the top of your program. You
should now have access to your library code. Nice!

 Page 5 of 12

C# OOP Cheat Sheet (1 of 4)
begincodingnow.com (C# OOP is section two of three)

Object-Oriented Programming (OOP)
Object-oriented programming (OOP) is a programming paradigm that
employs objects to encapsulate code. Objects consist of types and are
called classes. A class is just a template for an object which is an
instance of the class, which occupies memory. When we say that a class
is instantiated, we mean that an object in memory has been created.
Classes contain data and executable code. Everything in C# and .NET is

an object. In the menu View ➤ Object Browser.

Programming Principles
DRY is an acronym for Don’t Repeat Yourself. In OOP, encapsulation is
used to refer to one of two related but distinct notions, and sometimes
to the combination thereof: (1) A language mechanism for restricting
direct access to some of the object's components. (2) A language
construct that facilitates the bundling of data with the methods (or
other functions) operating on that data. In OOP, the open/closed
principle states that software entities (classes, modules, functions, etc.)
should be open for extension, but closed for modification.

Simple Class Declaration
The simplest class declaration is:
class Foo { }

[public | protected | internal | private]
[abstract | sealed | static]
class class_name [:class/interfaces inherited from]

A class is a data structure that can store data and execute code. It
contains data members and function members. The members can be
any combination of nine possible member types. A local variable is a
variable declared inside a function member. On the Internet are the
StyleCop Rules Documentation the ordering of members in classes.
Note: Whenever you have a class, such as our Customer, and inside
that class you have a List of objects of any type, you should always
initialize that list to an empty list with object initializer syntax: { };

Static
Static classes are meant to be consumed without instantiating them.
Static classes can be used to group members that are to be available
throughout the program. A static class must have all members marked
as static as well as the class itself. The class can have a static
constructor, but it cannot have an instance constructor. Static classes
are implicitly sealed, meaning you cannot inherit from a static class. A
non-static instantiable class can have static members which exist and
are accessible even if there are no instances of the class. A static field is
shared by all the instances of the class, and all the instances access the
same memory location when they access the static field. Static
methods exist. Static function members cannot access instance
members but can access other static members. Static members, like
instance members, can also be accessed from outside the class using
dot-syntax notation. Another option to access the member doesn’t use
any prefix at all, if you have included a using static declaration for the
specific class to which that member belongs:
Using static System.Console;

Abstract Classes
A class declared as abstract can never be instantiated. Instead, only its
concrete subclasses can be instantiated. Abstract classes can define
abstract members which are like virtual members, except they don’t
provide a default implementation. That implementation must be
provided by the subclass, unless that subclass is also declared abstract.

Sealed Classes
A sealed class cannot be used as the base class for any other class. You
use the sealed keyword to protect your class from the prying methods
of a subclass. Static classes are implicitly sealed.

Instance Constructors
For classes, the C# compiler automatically generates a parameterless
public constructor if and only if you do not define any constructors.
However, as soon as you define at least one constructor, the
parameterless constructor is no longer automatically generated, so you
may need to write it yourself.

Instance constructors execute when the object is first instantiated.
When an object is destroyed the destructor is called. Memory is freed
up at this time. Constructors are called with the new keyword.

Constructors can be static. A static constructor executes once per type,
rather than once per instance. A type can define only one static
constructor, and it must be parameterless and have the same name as
the type.
public class Customer
{
 public string Name; // in real world these are private
 public int Id; // in real world these are private
 public Customer() { } // constructor (same name as class)
 public Customer(int id) // constructor
 {
 this.Id = id; // set Id property
 }
 public Customer(int id, string name) // constructor
 {
 this.Id = id; // 'this' references current object Customer
 this.Name = name; // here we set Name property
 }
}
class Program
{
 static void Main(string[] args)
 {
 // ERROR: not contain constructor that takes zero arguments
 // unless we create OUR OWN parameterless constructor (we did)
 var customer = new Customer();
 customer.Id = 7;
 customer.Name = "John";
 Console.WriteLine(customer.Id);
 Console.WriteLine(customer.Name);
 }
}

Fields
A field is a variable that belongs to a class. It can be of any type, either
predefined or user-defined. A field initializer is part of the field
declaration and consists of an equal sign followed by an expression that
evaluates to a value. The initialization value must be determinable at
compile time. If no initializer is used, the compiler sets the value of a
field to a default value, determined by the type of the field. The default

value for each type is 0 and is false for bool. The default for reference
types is null. Readonly variable values are assigned t runtime.
class Order
{
 public int Id;
}
class Customer
{
 public int Id;
 public string Name;
 public readonly List<Order> Orders = new List<Order>();
 // Note: no parameterless constructor for Customer
 public Customer(int id)
 { // a constructor
 this.Id = id; // the keyword this is redundant
 }
 public Customer(int id, string name) : this(id)
 { // a constructor
 this.Name = name; // the keyword this is redundant
 }
 public void DoSomething() { } // just an example method

}
class Program
{
 static void Main(string[] args)
 {
 var customer = new Customer(3, "Bob");
 customer.Orders.Add(new Order());
 customer.Orders.Add(new Order() { Id = 7 });
 Console.WriteLine("Customer Id: " + customer.Id + " Name: "
 + customer.Name);
 Console.WriteLine("Num orders: " + customer.Orders.Count);
 foreach (var ord in customer.Orders) { Console.WriteLine("O
rder Id: " + ord.Id); }
 }
}

Here is the Console output of he above program. Notice that the first
order Id below is zero because zero is the default.
Customer Id: 3 Name: Bob
Number of orders: 2
Order Id: 0
Order Id: 7
Generally, you would use private fields with public properties to
provide encapsulation.

Methods
A method is a named block of code that is a function member of a class.
You can execute the code from somewhere else in the program by
using the method’s name, provided you have access to it. Below is the
simplest way to write a method inside a class, which are usually named
using PascalCase (first letter of each word is capitalized).
class NotAnything { void DoNothingMethod() { } }

You can also pass data into a method and receive data back as output.
A block is a sequence of statements between curly braces. It may
contain local variables (usually for local computations), flow-of-control
statements, method invocations, nested blocks or other methods
known as local functions.
[access modifier]
[static|virtual|override|new|sealed|abstract]
method name (parameter list) { body }

C# allows for optional parameters which you can either include or omit
when invoking the method. To specify that, you must include a default
value for that parameter in the method declaration. Value types
require the default value to be determinable at compile time, and
reference types only if the default value is null. The declaration order
must be all required (if any) – all optional (if any) – all params (if any).

 Page 6 of 12

C# OOP Cheat Sheet (2 of 4)
begincodingnow.com

Access
Modifier

Description

public Fully accessible. This is the implicit accessibility for
members of an enum or interface.

private Accessible only within the containing type. This is the
default accessibility for members of a class or struct.
Perhaps you have a method that is implementation
detail that calculates something.

protected Accessible only within the containing type or
subclasses (derived classes). May be a sign of bad
design.

internal Accessible only from the same assembly. We create a
separate class library and use internal. How? Right-
click Solution ➤ Add ➤ New Project ➤ Class Library
(DLL). We’ll need to add a Reference (Project, Add
Reference) and add using statement.

protected
internal

Not used normally! Accessible only from the same
assembly or any derived classes. The union of
protected and internal.

virtual – method can be overridden in subclass.
override – overrides virtual method in base class.
new – hides non-virtual method in base class.
sealed – prevents derived class from inheriting.
abstract – must be implemented by subclass.
Below is an example of a method called MyMethod (()
public class MyClass
{
 public int MyMethod (int integer, string text)
 {
 return 0;
 }
}

Properties
A property is declared like a field, but with a get/set block added.
Properties look like fields from the outside, but internally they contain
logic, like methods do. You can set the values of a public field and a
public property, no problem. Note that -= means subtract from self.
class Program
{
 static void Main(string[] args)
 {
 Item it = new Item();
 it.FieldPrice = 24.67M;
 it.PropertyPrice = 45.21M;
 Console.WriteLine(it.FieldPrice + " " + it.PropertyPrice);
 it.FieldPrice -= 1.00M;
 it.PropertyPrice -= 1.00M;
 Console.WriteLine(it.FieldPrice + " " + it.PropertyPrice);
 }
}
public class Item
{
 public decimal FieldPrice;
 public decimal PropertyPrice { get; set; }
}
Here is a public property Amount with its backing field, that can be
simplified with auto implemented property with { get; set; }.
private decimal _amount; // backing field
public decimal Amount // public property
{
 get { return _amount; }
 set { _amount = value; } // notice the keyword value
}

The get and set denote property accessors. The set method could
throw an exception if value was outside a valid range of values.

Object Initializer Syntax
C# 3.0 (.NET 3.5) introduced Object Initializer Syntax, a new way to
initialize an object of a class or collection. Object initializers allow you
to assign values to the fields or properties at the time of creating an
object without invoking a constructor.
class Program
{
 public class Person
 {
 public int id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 }
 static void Main(string[] args)
 { // don't need to initialize all fields
 var p = new Person {FirstName = "J", LastName = "Smith"};
 Console.WriteLine("Last name is {0}", p.LastName);
 // OUTPUT: Last name is Smith
 }
}

If the Person class had a constructor that initializes the LastName field,
and the same field in the object initializer was initialized, the
assignment in the LastName field in the object Initializer wins.
Collection Initializer Syntax works similarly as follows in the Main():
var p1 = new Person { Id = 1, FirstName = "John" };
var listP = new List<Person>()
{ // the List is being initialized
 p1,
 new Person {Id = 2, FirstName="Jackie"},
 new Person {Id = 3 },
};
foreach (var p in listP)
{
 Console.WriteLine(p.Id + " " + p.Name);
}
var listEmpty = new List<Person> { }; // initialize to an Empty list

Indexers
Indexers provide a natural syntax for accessing elements in a class or
struct that encapsulate a list or dictionary of values. Indexers are like
properties but are accessed via an index argument rather than a
property name. The string class has an indexer that lets you access each
of its char values via an int Index.
string s = "hello";
Console.WriteLine(s[0]); // 'h' zero-based
Console.WriteLine(s[1]); // 'e'
Console.WriteLine(s[99]); // IndexOutOfRangeException
Console.WriteLine(s[-1]); // IndexOutOfRangeException

The index argument(s) can be of any type(s), unlike arrays. You can call
indexers null-conditionally by inserting a question mark before the
square bracket as shown below.
string str = null;
Console.WriteLine(str?[0]); // Writes nothing; no error.
Console.WriteLine(str[0]); // NullReferenceException

To write an indexer, define a property called this, specifying the
arguments in square brackets.
class Sentence
{
 string[] words = "The quick brown fox".Split(); //field
 public Sentence() { } // default constructor
 public Sentence(string str) // constructor
 { words = str.Split(); }
 public int Length // property
 { get { return words.Length; } }
 public string this[int wordNum] // indexer
 {

 get { return words[wordNum]; }
 set { words[wordNum] = value; }
 }
}
static void Main(string[] args)
{
 string s = "hello world";
 Console.WriteLine(s[0]); // 'h' zero-based
 Console.WriteLine(s[5]); // ' '
 string str = null;
 Console.WriteLine(str?[0]); // Writes nothing; no error.
 // Console.WriteLine(str[0]); // NullReferenceException

 Sentence sen = new Sentence();
 Console.WriteLine(sen[1]); // quick
 sen[3] = "wildebeest"; // replace the 4th word
 Console.WriteLine(sen[3]); // wildebeest
 for (int i=0;i<sen.Length;i++) { Console.Write(sen[i] + "|"); }
 // now use our constructor to use our sentence
 Sentence sent = new Sentence("The sleeping black cat");
 Console.WriteLine(sent[1]); // sleeping
}

You have your own class Customer with fields FirstName and
LastName. Instantiate it as Cust1. Get the first name and last name
with Cust1.FirstName and Cust1.LastName. Indexers allow you to do
the same with Cust1[0] and Cust1[1] respectively. An indexer is a pair of
get and set accessors inside the code block of ReturnType this [
Type param1, ...]. The set and get blocks use switch. An
indexer allows an instance of a class to be indexed like an array.

Inheritance
Inheritance is a type of relationship (“Is-A”) between classes that allows
one class to inherit members from the other (code reuse). A horse “is
an” animal. Inheritance allows for polymorphic behaviour. In UML, the
Animal is at the top with the Horse under it with an arrow pointing up
to Animal. Another example of inheritance is where a Saving Bank
Account and Chequing Bank Account inherit from a Bank Account.
public class BaseClass
{
 public int Amount { get; set; }
 public BaseClass() { Console.WriteLine("Base constr"); }
 public void BaseDo() { Console.WriteLine("Base's BaseDo."); }
 public virtual void Do() { Console.WriteLine("Base's Do"); }
}
public class SubClass : BaseClass
{
 public SubClass() { Console.WriteLine("Sub constr"); }
 public override void Do() { Console.WriteLine("Sub's Do");}
}
class Program
{
 static void Main(string[] args)
 {
 var bas = new BaseClass();
 var sub = new SubClass();
 sub.Amount = 1; // Amount inherited from Base
 sub.Do(); // Sub's Do
 }
}

Output:
Base constr
Base constr
Sub constr
Sub's Do

Constructor Inheritance
When you instantiate a sub class, base class constructors are always
executed first, then sub class constructors, as you can see in lines 2 and
3 from the output. Base class constructors are not inherited.

 Page 7 of 12

C# OOP Cheat Sheet (3 of 4)
begincodingnow.com

Composition (aka Containment)
Composition is a type of relationship (“has -a”) between two classes
that allows one class to contain another. Inheritance is another type of
relationship. Both methods give us code re-use. In our example, both
the car and truck have an engine and the engine needs to send a
message to the console. We use a private field in the composite class
(car and truck) to achieve this. You use a member field to hold an object
instance. Generally, inheritance results in a more tightly-couple
relationship than composition and many developers prefer
composition, but it depends on your project. Two things to remember:
private field and constructor.

using System;
namespace CompositionGeneral
{
 class Car
 {
 private readonly Engine _engine;
 public Car(Engine engine) // constructor
 {
 _engine = engine;
 }
 public void DriveCar()
 {
 float speed = 0.0F;
 _engine.EngineStatus("car starting engine");
 speed = 50.0F;

 _engine.EngineStatus($"speed of {speed} Km/hr");
 _engine.EngineStatus("car engine off");
 }
 }
 class Truck
 {
 private readonly Engine _engine;
 public Truck(Engine engine) // constructor
 {
 _engine = engine;
 }
 public void DriveTruck() { //...
 }
 }
 class Engine // the car and truck "Have An" engine
 {
 public void EngineStatus(string message)
 {
 Console.WriteLine("Engine status: " + message);
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 var e = new Engine();
 var sedan = new Car(e);
 sedan.DriveCar();
 var pickup = new Truck(new Engine());
 pickup.DriveTruck();

 }
 }
}

Instead of having the car and truck contain a concrete class, like Engine,
what if we used an interface, like IEngine instead? Please see the
section on Interfaces & Extensibility for an example of this.

Composition vs Inheritance
Designing classes needs to be done carefully. Be careful with designing
your inheritance because it can result in large hierarchies that become
fragile (difficult to modify due to tight coupling). You can always re-
factor inheritance into composition. A horse and a fish are both
animals, but they are quite different. Both eat and sleep (Animal class)
but horses walk and fish swim. You could use composition and create a
CanWalk and CanSwim class. The horse “has-a” CanWalk class. This is
fine even though “has-a” may not make sense or sound correct in the
real world. You don’t want to put a Walk() method in your Animal class
unless you are certain all of your animals now and in the future can
walk. If you have that, using inheritance, you may need a sub-class of
Animal called mammal, and re-compile and re-deploy your code. Also,
with composition we get an extra benefit that’s not possible with
inheritance: Interfaces. We can replace our Animal class with an
interface IAnimal. This is dependency injection and is covered later in
the topic called Interfaces & Extensibility.

Method Overriding & Polymorphism
Method overriding is changing the implementation of an inherited
method that came from the base class. Use the virtual keyword in
the method of the base class and override in the derived class.
Virtual is just gives us the opportunity to override. You don’t have
to override it. What is polymorphism? Poly means many and morph
means form. Let’s use an example with classes called BaseClass,
ChildRed and ChildBlue.
class MyBaseClass
{
 public int CommonProperty { get; set; }
 public virtual void WriteMessage() { }
}
class ChildRed : MyBaseClass
{
 public new int CommonProperty { get; set; }
 public override void WriteMessage()
 {
 CommonProperty = 46;
 Console.WriteLine("Red " + CommonProperty); }
}
class ChildGreen : MyBaseClass
{
 public override void WriteMessage()
 {
 Console.WriteLine("Green " + CommonProperty);
 }
}
class Display
{
 public void WriteMyMessages(List<MyBaseClass> baseclasses)
 {
 foreach (var bc in baseclasses)
 {
 bc.WriteMessage();
 }
 }
}

When we call WriteMessage() above we have polymorphic behavior.
We have a list of different colors, but the implementation is different
for each colour. Red and Green overrode the base class’s method.
Notice that the list is a list of the base class MyBaseClass.
class Program
{
 static void Main(string[] args)
 {
 var baseclasses = new List<MyBaseClass>();
 baseclasses.Add(new ChildRed() { CommonProperty = 1 });
 baseclasses.Add(new ChildGreen() { CommonProperty = 3 });
 var display = new Display();

 display.WriteMyMessages(baseclasses);
 }
}

You can assign a variable that is of a derived type to a variable of one of
the base types. No casting is required for this. You can then call
methods of the base class through this variable. This results in the
implementation of the method in the derived class being called. You
can cast a base type variable into a derived class variable and call the
method of the derived class.

Interfaces
An interface is like a class, but it provides a specification (contract)
rather than an implementation for its members. Interface members are
all implicitly abstract. A class (or struct) can implement multiple
interfaces but a class can inherit from only a single class, and a struct
cannot inherit at all (aside from deriving from System.ValueType). The
interface's members will be implemented by the classes and structs
that implement the interface. By convention, interface names start with
the capital letter “I”. If a class implements an interface, it must
implement all the members of that interface. An interface declaration
can contain only declarations of the following kinds of nonstatic
function members: Methods, Properties, Events or Indexers. Interfaces
can inherit interfaces.
interface IInfo
{
 string GetName(); string GetAge();
}
class CA : IInfo
{ // declare that CA implements the interface IInfo
 public string Name; public int Age;
 // implement two interface methods of IInfo:
 public string GetName() { return Name; }
 public string GetAge() { return Age.ToString(); }
}
class CB : IInfo
{ // declare that CB implements the interface
 public string First; public string Last;
 public double PersonsAge;
 public string GetName() { return First + " " + Last; }
 public string GetAge() { return PersonsAge.ToString(); }
}
class Program
{ // pass objects as references to the interface
 static void PrintInfo(IInfo item)
 {
 Console.WriteLine("Name: {0} Age: {1}", item.GetName() ,
 item.GetAge());
 }
 static void Main()
 {
 // instantiate using object initialization syntax
 CA a = new CA() { Name = "John Doe", Age = 35 };
 CB b = new CB() { First = "Jane", Last = "Smith",
 PersonsAge = 44.0 };
 // references to the objects are automatically
 // converted to references
 // to the interfaces they implement (in the code below)
 PrintInfo(a);
 PrintInfo(b);

 Type myType = typeof(Program);
 Console.Title = myType.Namespace;
 }
}

Output:
Name: John Doe Age: 35
Name: Jane Smith Age: 44

 Page 8 of 12

C# OOP Cheat Sheet (4 of 4)
begincodingnow.com

Interfaces & Extensibility
We create a constructor and inject a dependency, which is called
dependency injection. In the constructor we are specifying the
dependencies of our class. The FilesProcessor is not directly dependent
on the ConsoleLogger. It doesn’t care who implements ILogger. It could
be a DatabaseLogger that does it. Four parts in bold for easier reading.
public interface ILogger
{
 void LogError(string message); // method
 void LogInfo(string message); // method
}
public class ConsoleLogger : ILogger
{ // ConsoleLogger implements ILogger
 public void LogError(string message)
 { // Console.ForegroundColor = ConsoleColor.Red;
 Console.WriteLine(message);
 }
 public void LogInfo(string message)
 {
 Console.WriteLine(message);
 }
}
public class FilesProcessor
{ // FilesProcessor is dependent on an interface.
 private readonly ILogger _logger;
 public FilesProcessor(ILogger logger) // constructor
 {
 _logger = logger;
 }
 public void Process()
 {
 try
 { // we might employ the using keyword in the real world
 _logger.LogInfo($"Migrating started at {DateTime.Now}");
 _logger.LogInfo($"In middle of doing stuff...");
 int zero = 0;
 int myError = 1 / zero;
 _logger.LogInfo($"Migrating ended at {DateTime.Now}");
 }
 catch
 {
 _logger.LogError($"Opps! Error");
 }
 }
}
class Program
{
 static void Main(string[] args)
 {
 // Our logger to sends to console
 var filesProcessor = new FilesProcessor(new ConsoleLogger());
 filesProcessor.Process();
 Console.WriteLine("done program.");
 }
}

Output:
Migrating started at 2019-02-07 10:05:43 AM
In middle of doing stuff...
Opps! Error
done program.

We can extend it. We can create more loggers other than
ConsoleLogger, such as DatabaseLogger, FileLogger, EmailLogger
SMSLogger and so on. All we need to do is change the Main(). Note that
you can have the FilesProcessor depend on more than one interface if
needed.
Add a property to the ILogger. Must be a property - no fields allowed.
bool Colourize { get; set; } // property

ConsoleLogger implements Colourize this way:

public bool Colourize { get; set; } // no default

We changed the ConsoleLogger method this way:
public bool Colourize { get; set; } = true; // default is true
public void LogError(string message)
{
 if (Colourize) { Console.ForegroundColor = ConsoleColor.Red; }
 else { Console.ForegroundColor = ConsoleColor.White; }
 Console.WriteLine(message);
 …
}

The Main() program uses object initializer syntax this way:

var FilesProcessor = new FilesProcessor(new ConsoleLogger() {
Colourize = false }); // uses object initializer syntax

or this way since Colourize has a default value of true, initialization is
not necessary if you want Colourize to be true.
var FilesProcessor = new FilesProcessor(new ConsoleLogger()});

Add Another Constructor (log to more than one location)
In the FilesProcessor:
private readonly ILogger _logger2; // add this
public FilesProcessor(ILogger logger, ILogger logger2) // new ctor
{ _logger = logger; _logger2 = logger2; }

In the Process() method add lines like this:

if (_logger2 != null) { _logger2.LogInfo($"Processing started at
{DateTime.Now}"); }

In the Main() you can now log to the console and a file, or just to the
console or just to a file.
var filesProcessor = new FilesProcessor(new ConsoleLogger(), new
FileLogger("D:\\test\\InterfacesExtensibility4.txt"));

Interfaces & Testability
Using interfaces help with unit testing. We’ll use the Microsoft Test
Runner. You get a new journal entry and then post it passing the entry
to the Post() method of the JournalPoster class. Posting the entry
requires the services of the checker. We must use an interface for the
checker.
class Program
{
 static void Main(string[] args)
 {
 var jp = new JournalPoster(new DrEqualsCrChecker());
 var je = new JournalEntry { DebitAmount = 120.50f,
 CreditAmount = -120.50f };
 jp.Post(je);
 Console.WriteLine("Posted? " + je.IsPosted);
 Console.WriteLine("Date posted: " +
 je.Posting.PostingDate.ToString("yyyy-MM-dd"));
 Console.WriteLine("Debit amount: {0:C}", je.DebitAmount);
 Console.WriteLine("Credit amount: {0:C}", je.CreditAmount);
 Console.WriteLine("JE Balance: {0:C}", je.Posting.Balance);
 }
}
Output:
Posted? True
Date posted: 2019-02-07
Debit amount: $120.50
Credit amount: -$120.50
JE Balance: $0.00
public class JournalEntry
{ // in the reaal world there is more than this
 public Posting Posting { get; set; }
 public float DebitAmount = 0f;
 public float CreditAmount = 0f;
 public DateTime DatePosted { get; set; }
 public bool IsPosted {
 get { return Posting != null; }
 }
}
public class Posting {
 public float Balance { get; set; } // zero if Dr = Cr
 public DateTime PostingDate { get; set; }
}
public class JournalPoster
{ // this class does not even know about DrEqualsCrChecker
 private readonly IDrEqualsCrChecker _checker;

 public JournalPoster(IDrEqualsCrChecker checker)
 { _checker = checker; }
 public void Post(JournalEntry je)
 {
 if (je.IsPosted)
 throw new InvalidOperationException("Opps. Already posted!
");
 je.Posting = new Posting
 {
 Balance = _checker.CalcBalance(je),
 PostingDate = DateTime.Today.AddDays(1)
 };
 }
}
public interface IDrEqualsCrChecker
 { float CalcBalance(JournalEntry je); }
public class DrEqualsCrChecker : IDrEqualsCrChecker
{
 public float CalcBalance(JournalEntry je)
 {
 var balance = je.DebitAmount + je.CreditAmount;
 return balance;
 }
}

We need to test the JournalPoster’s Post method. We need to isolate it
so we can write code to test our code. Go to the Solution Explorer ➤

Right-Click Solution ➤ Add ➤ Project ➤ Visual C# ➤ Test ➤ Unit Test

Project ➤ Name it after the Project and append .UnitTests to the name
➤ OK. You get the following by default. We’ll change that.
[TestClass]
public class UnitTest1
{
 [TestMethod]
 public void TestMethod1() { }
}

To test JournalPoster(), rename UnitTest1 to JournalPosterTests.
Rename TestMethod1 following the naming convention of
methodname_condition_expectation. Add a Reference to our Project in
our UnitTest project; in that right-Click References ➤ Add Reference ➤
Projects ➤ click the check box of the project. Create a Fake debit equals
credit checker because we don’t want to pass the original one to the
JournalPoster. Pass an always-working fake one to test JournalPoster.
[TestClass]
public class JournalPosterTests
{
 // need to add a Reference to our project
 [TestMethod]
 [ExpectedException(typeof(InvalidOperationException))]
 public void JournalPoster_JEIsAlreadyPosted_ThrowsAnException()
 { // naming convention: methodname_condition_expection
 var JournalPoster = new JournalPoster(new FakeDrEqualsCrChecke
r());
 var je = new JournalEntry { Posting = new Posting() };
 JournalPoster.Post(je);
 }
 [TestMethod]
 public void JournalPoster_JEIsNotPosted_ShouldSetPostedPropertyOfJ
ournalEntry()
 {
 var JournalPoster = new JournalPoster(new FakeDrEqualsCrChecke
r());
 var je = new JournalEntry();
 JournalPoster.Post(je);
 Assert.IsTrue(je.IsPosted);
 Assert.AreEqual(1, je.Posting.Balance);
 Assert.AreEqual(DateTime.Today.AddDays(1), je.Posting.PostingD
ate);
 }
}
public class FakeDrEqualsCrChecker : IDrEqualsCrChecker
{ // methods defined in an interface must be public
 public float CalcBalance(JournalEntry je)
 { return 1; } // simple and it will works
}

 Page 9 of 12

C# Advanced Cheat Sheet (1 of 4)
begincodingnow.com (C# Advanced is section three of three)

Generics
C# has two separate mechanisms for writing code that is reusable
across different types: inheritance and generics. Whereas inheritance
expresses re-usability with a base type, generics express reusability
with a "template" that contains "placeholder" types.
using System;
using System.Collections.Generic;
namespace Generics
{
 public class Customer
 {
 public int Id { get; set; }
 public string Name { get; set; }
 }
 class Program
 {
 static void Main(string[] args)
 {
 List<Customer> myCustomers = new List<Customer>(); //empty
 myCustomers.Add(new Customer() { Id = 1, Name = "Jack" });
 myCustomers.Add(new Customer() { Id = 2, Name = "Jill" });
 foreach (Customer cust in myCustomers) {
 Console.WriteLine(cust.Name); }
 }
 }
}

Lists of Objects
Lists were covered briefly in the Basics section of this cheat sheet
series, but the example was only a list of integers. Here was have a list
of our own objects based on our own class: Customer.
class Customer
{
 public int Id = 0;
 public string Name = "";
 public string Status { get; set; }
}
class Repository
{
 private static List<Customer> privatecust = new List<Customer>();
 public static IEnumerable<Customer> Customers {
 get { return privatecust; }
 }
 public static void AddCustomers(Customer customer) {
 privatecust.Add(customer);
 }
 public static int NumberOfCustomers {
 get { return privatecust.Count; }
 }
}
class Program
{
 static void Main(string[] args)
 {
 var cust1 = new Customer { Id = 1, Name = "Joe",
 Status = "Active" };
 var cust2 = new Customer { Id = 1, Name = "Sally",
 Status = "Active" };
 Repository.AddCustomers(cust1);
 Repository.AddCustomers(cust2);
 foreach (Customer cust in Repository.Customers)
 { Console.WriteLine($"Name: {cust.Name} Id: {cust.Id} " +
 $"Status: {cust.Status}"); }
 Console.WriteLine($"Number of customers: " +
 $"{Repository.NumberOfCustomers}");
 }
}

Here is another example of a list of objects, without the Repository.
class Program
{
 public class Customer

 { // mix fields with a property just for demonstration
 public int Id = 0;
 public string Name = "";
 public string Status { get; set; }
 }
 static void Main(string[] args)
 {
 var customers = new List<Customer>
 { // using object initialization syntax here
 new Customer { Id = 4, Name = "Jack", Status = "Active"},
 new Customer { Name = "Sally", Status = "Active"}
 };
 customers.Add(new Customer { Name = "Sam" });
 foreach (Customer cust in customers)
 { Console.WriteLine(cust.Id + " " + cust.Name +
 " " + cust.Status); }
 }
}

Delegates
A delegate is an object that “holds” one or more methods. A delegate is
a reference to a function or ordered list of functions with a specific
signature. You can “execute” a delegate and it will execute the method
or methods that it “contains” (points to). A delegate is a user-defined
reference type, like a class. You can create your own delegate or use
the generic ones: Func<> and Action<>. First, we’ll create our own.
class Program
{
 delegate int Multiplier(int x); // type declaration
 static void Main()
 {
 Multiplier t = Cube; // Create delegate instance
 // by assigning a method to a delegate variable.
 int result = t(2); // Invoke delegate: t(3)
 Console.WriteLine(result); // 8
 }
 static int Cube(int x) => x * x * x;
}

Here is second example.
using System;
namespace ReturnValues
{
 // Illustrated C# 7 Fifth Edition page 361
 delegate int MyDel(); // Declare delegate with return value.
 class MyClass
 {
 private int IntValue = 5;
 public int Add2() { IntValue += 2; return IntValue; }
 public int Add3() { IntValue += 3; return IntValue; }
 }
 class Program
 {
 static void Main()
 {
 MyClass mc = new MyClass();
 MyDel mDel = mc.Add2; // Create initialize delegate.
 mDel += mc.Add3; // Add a method.
 mDel += mc.Add2; // Add a method.
 Console.WriteLine($"Value: { mDel() }"); // output 12
 }
 }
}

Here is a more realistic example of delegates. Here we create a
multicast delegate. The consumer of our code is the method Main().
We have an object that we need to “process” with several methods in
order, and we also want the code to be extensible so the consumer can
add their own methods in Main() to the list of our methods.
class MyClass
{
 public string MyString { get; set; }
 public int MyInt { get; set; }

 public static MyClass MyClassDoMethod()
 {
 return new MyClass(); // we don't use these

 }
}

Our code has 3 methods that act upon the above class. They are:
AddOne(), DoubleIt() and AppendString().
class MyClassMethods
{
 public void AddOne(MyClass mc)
 { // here we do something with the object mc
 mc.MyInt = mc.MyInt + 1;
 Console.WriteLine("AddOne: " + mc.MyString + " " + mc.MyInt);
 }
 public void DoubleIt(MyClass mc)
 {
 mc.MyInt = mc.MyInt * 2;
 Console.WriteLine("DoubleIt:" + mc.MyString + " " + mc.MyInt);
 }
 public void AppendString(MyClass mc)
 {
 mc.MyString = mc.MyString + " appending string now ";
 Console.WriteLine("AppendString: " + mc.MyString + " "
 + mc.MyInt);
 }
}
class MyClassProcessor
{
 public int MyAmount { get; set; }
 public delegate void MyClassMethodHandler(MyClass myclass);

 public void Process(MyClassMethodHandler methodHandler)
 { // methodHandler is a delegate
 // instantiate with object initialization syntax
 var myclass = new MyClass { MyString = "In Process method ",
 MyInt = 1 };
 methodHandler(myclass);
 // we do not define the methods we want to run here because
 // we are going to let the consumer define that.
 }
}
class Program
{
 static void Main(string[] args)
 {
 var myclassprocessor = new MyClassProcessor();
 var myclassmethods = new MyClassMethods();
 MyClassProcessor.MyClassMethodHandler
 methodHandler = myclassmethods.AddOne;
 // MyClassMethodHandler is a delegate (multicast)
 // methodHandler is pointer to a group of functions (delegate)
 methodHandler += myclassmethods.DoubleIt;
 methodHandler += FromConsumerMinusThree;
 methodHandler += myclassmethods.AppendString;

 // Process() takes a delegate
 myclassprocessor.Process(methodHandler);
 }
 static void FromConsumerMinusThree(MyClass myC)
 {
 myC.MyInt = myC.MyInt - 3;
 Console.WriteLine("FromConsumerMinusThree: " + myC.MyString +
 myC.MyInt);
 }
}

Output:
AddOne: inside Process method 2
DoubleIt: inside Process method 4
FromConsumerMinusThree: inside Process method 1
AppendString: inside Process method appending string now 1

Func<> and Action<>
In .NET we have 2 delegates that are generic: Action<> and Func<>.
Each also come in a non-generic form. Modifying the above program
requires us to use Action<> and introducing a new processor (we’ll
call it MyClassGenericProcessor) and removing our custom
delegate in there and adding Action<>. Also in the Main() program
we need to change the first line and the third line of code.

 Page 10 of 12

C# Advanced Cheat Sheet (2 of 4)
begincodingnow.com

Func<> and Action<> continued…
class MyClassGenericProcessor
{
 public int MyAmount { get; set; }
 // public delegate void MyClassMethodHandler(MyClass myclass);

 public void Process(Action<MyClass> methodHandler)
 { // methodHandler is a delegate
 // instantiate with object initialization syntax
 var myclass = new MyClass { MyString = "in Process method ",
 MyInt = 1 };
 methodHandler(myclass);
 // we do not define the methods we want to run here because
 // we are going to let the consumer define that.
 }
}

Below is a partial listing of our Main() program showing the changes.
var myclassprocessor = new MyClassGenericProcessor(); // generics
var myclassmethods = new MyClassMethods();
Action<MyClass> methodHandler = myclassmethods.AddOne;

Anonymous Types
An anonymous type is a simple class created on the fly to store a set of
values. To create an anonymous type, you use the new keyword
followed by an object initializer { }, specifying the properties and values
the type will contain. Anonymous types are used in LINQ queries.
static void Main(string[] args)
{
 var person = new { Name = "Bob", Number = 32 };
 Console.WriteLine($"Name: {person.Name} " +
 $"Number: {person.Number}");
 // output: Name: Bob Number: 32
}

Here is another example.
class Program
{
 static void Main(string[] args)
 {
 var person = new
 {
 Name = "John",
 Age = 29,
 Major = "Computers"
 };
 Console.WriteLine($"{ person.Name }, Age { person.Age }, "
 + $"Major: {person.Major}");
 // the code below produces the same results
 string Major = "Computers";
 var guy = new { Age = 29, Other.Name, Major };
 Console.WriteLine($"{guy.Name }, Age {guy.Age }, "
 + $"Major: {guy.Major}");
 // John, Age 29, Major: Computers
 }
}
class Other
{
 // Name is a static field of class Other
 static public string Name = "John";
}

Lambda
A lambda expression is an unnamed method written in place of a
delegate instance. A lambda expression is an anonymous method that
has no access modifier, no name and no return statement. We have
code below that we can re-factor using a lambda expression. The => is
read as “goes to”.
class Program
{
 delegate int MyDel(int InParameter); // custom delegate

 static void Main(string[] args)
 {
 MyDel AddTwo = x => x + 2;
 Func<int, int> AddThree = number => number + 3;
 Console.WriteLine(AddOne(0));
 Console.WriteLine(AddTwo(0));
 Console.WriteLine(AddThree(0));
 }
 static int AddOne(int number)
 {
 return number + 1;
 }
}

Here is another example.
static void Main(string[] args)
{
 Console.WriteLine(Square(3)); // 9
 Func<int, int> squareDel = Square;
 Console.WriteLine(squareDel(3)); // 9
 Func<int, int> squareLambda = m => m * m;
 Console.WriteLine(squareLambda(3)); // 9
 Func<int, int, long> multiplyTwoInts = (m, n) => m * n;
 Console.WriteLine(multiplyTwoInts(3,4)); // 12
}
static int Square(int number)
{
 return number * number;
}

Here is another example that is more realistic. Here we have a list of
Products. We also have a repository of products. We use object
initialization syntax to initialize the list with a series of products.
FindAll() takes a predicate. A predicate is something that evaluates
to true or false.
class Product
{
 public string Title { get; set; }
 public int Price { get; set; }
}

class ProductRepository
{
 public List<Product> GetProducts()
 {
 return new List<Book>
 {
 new Product () { Title ="product 1", Price = 5},
 new Product () { Title = "product 2", Price = 6 },
 new Product () { Title = "product 3", Price = 17 }
 };
 }
}
class Program
{
 static void Main(string[] args)
 {
 var products = new ProductRepository().GetProducts();
 List<Product> cheapProducts = products.FindAll(b =>
 b.Price < 10);
 foreach (var product in cheapProducts)
 {
 Console.WriteLine(product.Title + " $" + product.Price);
 }
 }
}

You can use a lambda expression when argument requires a delegate.

Events
1. define a delegate (define signature) or use EventHandler<>
2. define an event based on that delegate (ItemProcessed in this case)
3. raise the event
Here is an example program that uses events.
public class Item
{
 public string Name { get; set; } // a property
}

public class ItemEventArgs : EventArgs
{
 public Item Item { get; set; }
}
public class ItemProcessor
{
 // public delegate void ItemProcessedEventHandler(object source,
 // ItemEventArgs args);
 public event EventHandler<ItemEventArgs> ItemProcessed;

 public void ProcessItem(Item item)
 {
 Console.WriteLine("Processing Item...");
 Thread.Sleep(1500); // delay 1.5 seconds
 OnItemProcessed(item);
 }
 protected virtual void OnItemProcessed(Item item)
 {
 ItemProcessed?.Invoke(this, new ItemEventArgs() { Item = item
});
 // if (ItemProcessed != null)
 // ItemProcessed(this, new ItemEventArgs() { Item = item });
 }
}
public class SubscriberOne
{
 public void OnItemProcessed(object source, ItemEventArgs args)
 { // maybe send an email
 Console.WriteLine("SubscriberOne: " + args.Item.Name);
 }
}
class SubscriberTwo
{
 public void OnItemProcessed(object source, ItemEventArgs args)
 { // maybe send SMS (text message)
 Console.WriteLine("SubscriberTwo: " + args.Item.Name);
 }
}

Here is the main program.
class Program
{
 static void Main(string[] args)
 {
 var item = new Item() { Name = "Item 1 name" };
 var itemProcessor = new ItemProcessor(); // publisher
 var subscriberOne = new SubscriberOne(); // subscriber
 var subscriberTwo = new SubscriberTwo(); // subscriber

 Console.WriteLine("Beginning program EventsExample...");

 // itemProcessed is a list of pointers to methods
 itemProcessor.ItemProcessed += subscriberOne.OnItemProcessed;
 itemProcessor.ItemProcessed += subscriberTwo.OnItemProcessed;

 itemProcessor.ProcessItem(item);
 }
}

Attributes
Attributes allow you to add metadata to a program’s assembly.
Attribute names use Pascal casing and end with the suffix Attribute. An
attribute section consists of square brackets enclosing an attribute
name and sometimes a parameter list. A construct with an attribute
applied to it is said to be decorated, or adorned, with the attribute. Use
the [Obsolete] attribute to mark the old method as obsolete and to
display a helpful warning message when the code is compiled.

Preprocessor Directives
C# includes a set of preprocessor directives that are mainly used for
conditional compilation. The directives #region and #endregion
delimit a section of code that can be expanded or collapsed using the
outlining feature of Visual Studio and can be nested within each other.

 Page 11 of 12

C# Advanced Cheat Sheet (3 of 4)
begincodingnow.com

Extension Methods
Extension methods allow an existing type to be extended with new
methods, without altering the definition of the original type. An
extension method is a static method of a static class, where the this
modifier is applied to the first parameter. The type of the first
parameter will be the type that is extended. Extension methods, like
instance methods, provide a way to chain functions.
public static class MyStringExtensions
{
 public static string Shorten(this String str, int numberOfWords)
 {
 if (numberOfWords < 0) throw new
 ArgumentOutOfRangeException("must contain words");
 if (numberOfWords == 0) return "";
 string[] words = str.Split(' ');
 if (words.Length <= numberOfWords) return str;
 return string.Join(" ", words.Take(numberOfWords)) + "...";
 }
}
class Program
{
 static void Main(string[] args)
 {
 string senten = "A very very long sentence...";
 Console.WriteLine("Number of chars: " + senten.Length);
 var shortededSentence = senten.Shorten(10);
 var s2 = shortededSentence.ToUpper();
 var s3 = s2.PadRight(60);
 Console.WriteLine("[" + s3 + "]");
 }
}

LINQ
LINQ stands for Language Integrated Query and is pronounced “link.”
LINQ is an extension of the .NET Framework and allows you to query
collections of data in a manner like using SQL to query databases. With
LINQ you can query data from databases (LINQ to Entities), collections
of objects in memory (LINQ to Objects), XML documents (LINQ to XML),
and ADO.NET data sets (LINQ to Data Sets).
using System;
using System.Collections.Generic;
using System.Linq;
namespace LINQint
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] numbers = { 6, 47, 15, 68, 23 }; // Data source
 IEnumerable<int> bigNums = // Define & store the query.
 from n in numbers
 where n > 30
 orderby n descending
 select n;
 foreach (var x in bigNums) // Execute the query.
 Console.Write($"{ x }, "); // output: 68, 47
 }
 }
}

Now let’s use a more realistic example. First we’ll show the code
without LINQ, then with LINQ. We have a class of our objects called
Product and we have a ProductRepository.
class Product
{
 public string Name { get; set; }
 public float Price { get; set; }
}
class ProductRepository

{
 public IEnumerable<Product> GetProducts() // method
 {
 return new List<Product>
 {
 new Product() {Name = "P one", Price = 5},
 new Product() {Name = "P two", Price = 9.99f},
 new Product() {Name = "P three", Price = 12},
 };
 }
}
class Program
{
 static void Main(string[] args)
 {
 var products = new ProductRepository().GetProducts();
 var pricyProducts = new List<Product>();
 // ------without LINQ----------------------------
 foreach (var product in products)
 {
 if (product.Price > 10)
 pricyProducts.Add(product);
 }
 // ------without LINQ-----------------------------
 foreach (var product in pricyProducts)
 Console.WriteLine("{0} {1:C}",product.Name, product.Price);
 }
}

When you type product followed by the dot, Intelisense gives you a few
methods and a long list of extension methods. One extension method is
Where<>. Where is asking for a delegate. Func<Product,bool>
predicate. It points to a method that gets a Product and returns a
bool based on the predicate. Whenever we see Func<> as a delegate
we can use a Lambda expression such as p => p.Price > 10. Here is the
code with LINQ.
// -----with LINQ---
var pricyProducts2 = products.Where(p => p.Price > 10);
// -----with LINQ---

The LINQ extension methods can be chained. When we use Select in
this case we get back a list of strings, not products.
// -----LINQ--
var pricyProducts2 = products.Where(p => p.Price > 8)
 .OrderBy(p => p.Name)
 .Select(p => p.Name); // string
// -----LINQ--
foreach (var product in pricyProducts2)
 Console.WriteLine(product);
There are several LINQ extension methods beyond Where(). A few are
listed in the C# comments below. If you only want one Product you can
use Single() or SingleOrDefault(). Single() will throw an
error InvalidOperationException if it can’t find a match. The OrDefault
will return null if it can’t find a match, which is probably better.

var product = products.Single(p => p.Name == "P two");
var product2 = products.SingleOrDefault(p => p.Name == "P unknown");
Console.WriteLine(product.Name); // P two
Console.WriteLine(product2 == null); // output: True
var product3 = products.First();
Console.WriteLine(product3.Name); // P one
// FirstOrDefault() Last() LastOrDefult()
// Skip(2).Take(3) will skip the first 2 and take the next 3
// Count() Max() Min() Sum() Average()
// Average(p => p.Price)

Nullable Types
Reference types can represent a nonexistent value with a null
reference. Normally value types cannot be null, however to represent
null in a value type, you must use a special construct called a nullable
type which is denoted with a value type immediately followed by the ?
symbol. An important use case for nullable types is when you have a

database with a column like MiddleName or BirthDate which may have
a null value.
static void Main(string[] args)
{
 // DateTime is a value type - cannot be null, but...
 System.Nullable<DateTime> d = null;
 DateTime? dt = null;
 Console.WriteLine("GetValueOrDefault: " + dt.GetValueOrDefault());
 Console.WriteLine("HasValue: " + dt.HasValue); // property
 // below line causes InvalidOperationException when null
 // Console.WriteLine("Value: " + dt.Value); // property
 Console.WriteLine(dt);

 // output: 0001-01-01 12:00:00 AM
 // output: False
 // output:
}

What about conversions and the null-coalescing operator?
// Conversions
DateTime? date = new DateTime(2019, 1, 1);
// DateTime date2 = date; compiler says cannot convert
DateTime date2 = date.GetValueOrDefault();
Console.WriteLine("date2: " + date2);
DateTime? date3 = date2;
Console.WriteLine(date3.GetValueOrDefault());

// Null Coales Operator: ??
DateTime? date4 = null;
DateTime date5;
// if date has a value use that, otherwise use today
if (date4 != null)
 date5 = date4.GetValueOrDefault();
else
 date5 = DateTime.Today;
// null
date5 = date4 ?? DateTime.Today; // same as if block above

When working with nullable types, GetValueOrDefault() is the
preferred way of doing things.

Dynamics
Programming languages are either static or dynamic. C# and Java are
static, but Ruby, JavaScript and Python are dynamic. With static
languages the types are resolved at compile time, not at run time. The
CLR (.NET’s virtual machine) takes compiled code (verified by the
compiler) which is in Intermediate language (IL) and converts that to
machine code at runtime. Runtime checking is performed by the CLR.
Runtime type checking is possible because each object on the heap
internally stores a little type token. You can retrieve this token by
calling the GetType method of object (reflection). With C# dynamics
and the keyword dynamic, we don’t need to use reflection. Much
cleaner code results. When converting from dynamic to static types, if
the runtime type of the dynamic object can be implicitly converted to
the target type we don’t need to cast it.
dynamic name = "Bob";
name = 19; // this works because name is dynamic!
name++;
Console.WriteLine(name); // 20
dynamic a = 4, b = 5;
var c = a + b; // c becomes dynamic
Console.WriteLine(c); // 9
int i = 7;
dynamic d = i;
long l = d;
Console.WriteLine(l); //

 Page 12 of 12

C# Advanced Cheat Sheet (4 of 4)

begincodingnow.com

Asynchronous
In the synchronous model the program executes line by line, but in the
asynchronous model (e.g. media players, web browsers),
responsiveness is improved. In .NET 4.5 (in 2012) Microsoft introduced
a new a new asynchronous model, instead of multi-threading and call-
backs. It uses async and await keywords. In our example we have a
WPF program that has 2 blocking operations (downloading and
writing). You can only use the await operator inside an async
method. Async affects only what happens inside the method and has
no effect on a method’s signature or public metadata.

using System.IO;
using System.Net;
using System.Threading.Tasks;
using System.Windows;
namespace AysnchronousProgramming
{
 public partial class MainWindow : Window
 {
 public MainWindow()
 {
 InitializeComponent();
 }
 private async void Button_Click(object sender,
 RoutedEventArgs e)
 {
 await DownloadHtmlAsync("http://begincodingnow.com");
 }
 public async Task DownloadHtmlAsync(string url)
 { // decorate method async, use Task, and only by convention
 // put "Async" at end of the method name.
 var webClient = new WebClient();
 // use TaskAsync not Async, and await is a compiler marker
 var html = await webClient.DownloadStringTaskAsync(url);
 using (var streamWriter = new
 StreamWriter(@"c:\temp\result.html"))
 { // use the Async one: WriteAsync and add await
 await streamWriter.WriteAsync(html);
 }
 MessageBox.Show("Finished downloading","Asynch Example");
 }
 public void DownloadHtml(string url)
 { // NOT asynchronous! - just shown here for comparison
 var webClient = new WebClient();
 var html = webClient.DownloadString(url);

 using (var streamWriter = new
 StreamWriter(@"c:\temp\result.html"))
 {
 streamWriter.Write(html);
 }
 }
 }
}
Now we will modify our program. The message box “Waiting…”
executes immediately. We can execute other code here. Another
message box executes after the blocking operation completes.
private async void Button_Click(object sender, RoutedEventArgs e)
{
 //await DownloadHtmlAsync("http://begincodingnow.com");
 // Note: if we use await we must use async in method definition.
 // var html = await GetHtmlAsync("http://begincodingnow.com");
 var getHtmlTask = GetHtmlAsync("http://begincodingnow.com");
 // executes immediately
 MessageBox.Show("Waiting for task to complete...");
 var html = await getHtmlTask;
 // executes after html is downloaded
 MessageBox.Show(html.Substring(0, 500));

}
public async Task<string> GetHtmlAsync(string url)
{
 var webClient = new WebClient();
 return await webClient.DownloadStringTaskAsync(url);
}

Exception Handling
We write exception handling code to avoid those Unhandled Exception
messages when the program crashes. We can use a Try Catch block.
The four keywords of exception handling are: try, catch, finally and
throw. The first code example crashes with an unhandled exception. In
the second example we handle the exception.
public class Calculator
{
 public int Divide(int numerator, int denominator)
 {
 return numerator / denominator;
 }
}
class Program
{
 static void Main(string[] args)
 {
 var calc = new Calculator();
 // Unhandled Exception: System.DivideByZeroException:
 // Attempted to divide by zero. CRASHES !!
 var result = calc.Divide(89, 0);
 }
}
Let’s refactor our Main() method to use a try catch block.
static void Main(string[] args)
{
 try
 {
 var calc = new Calculator();
 var result = calc.Divide(89, 0);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Unexpected error!"); // F9, F5
 }
}

To implement multiple catch blocks set a break point (with F9) and run
it in debug mode (F5). Place your cursor on “ex” and click the small
right-arrow icon in the pop-up to bring up more details. Properties have
the wrench icon. Look at Message, Source (the DLL or assembly),
StackTrace (sequence of method calls in the reverse order – click the
magnifier icon), TarketSite (method where exception happened) and
the others.
static void Main(string[] args)
{
 try
 {
 var calc = new Calculator();
 var result = calc.Divide(89, 0);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Unexpected error! " +
 ex.Message); // F9, F5
 // Unexpected error! Attempted to divide by zero.
 }
}

Multiple catch blocks example below.
static void Main(string[] args)
{
 try
 {
 var calc = new Calculator();
 var result = calc.Divide(89, 0);
 // type DivideByZeroException and F12
 // for Object Browser to see inheritance

 // hierarchy & click parent (bottom right)
 }
 catch (DivideByZeroException ex)
 {
 Console.WriteLine("Cannot divide by zero. " + ex.Message);
 }
 catch (ArithmeticException ex)
 {
 Console.WriteLine("Arithmetic exception. " + ex.Message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Unexpected error! " +
 ex.Message); // F9, F5
 // Unexpected error! Attempted to divide by zero.
 }
 finally // unmanaged resources are not handled by CLR
 { } // we need to .Dispose() of those here, unless we employ
// the using statement.
}
class Program
{ // we need using System.IO;
 static void Main(string[] args)
 {
 try
 { // using creates finally block in background
 using (var strmRdr = new StreamReader(@"c:\not.txt")) ;
 }
 catch (Exception ex)
 {
 Console.WriteLine("Unexpected error!");
 }
 }
}

One of the new features in C# 6 was exception filters, which are not
covered here. They give you more control over your catch blocks and
further tailor how you handle specific exceptions.

Recursion
Recursion happens when a method or function calls itself. We must
write a condition that checks that the termination condition is satisfied.
Below is a program that tells you how many times a number is evenly
divisible by a divisor.
public static int CountDivisions(double number, double divisor)
{
 int count = 0;
 if (number > 0 && number % divisor == 0)
 {
 count++;
 number /= divisor;
 return count += CountDivisions(number, divisor);
 }
 return count;
}
static void Main(string[] args)
{
 Console.WriteLine("Enter your number: ");
 double number = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Enter your divisor: ");
 double divisor = Convert.ToDouble(Console.ReadLine());
 int count = CountDivisions(number, divisor);
 Console.WriteLine($"Total number of divisions: {count}");
 Console.ReadKey();
}

